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Design

Bench-top component testing

Full prototypes

Acute and chronic animal implants

Investigational Device Exemption (IDE) 

Application

Scope of current NIH funded project



Motivation

• ~ 5,000,000 people in US with congestive heart failure

– Over 550,000 new cases of heart failure will be diagnosed 
in the next year.

– responsible for more hospitalizations than all forms of 
cancer combined. 

• <2,500 transplants available per year

– 2,016 and 2,127 heart transplants were performed in the 
United States in 2004 and 2005, respectively. 

• Many patients would benefit from a mechanical device:

– Short term – ‘bridge-to transplant’ (BTT)

– Long term – ‘destination therapy’



Left Ventricular Assist Device (LVAD)

• Pump assists native heart

• Proven short-term effectiveness  

• Current devices have limited design 
life due to biocompatibility

– Degradation of the artificial material

Mechanical Wear

– Blood damage caused by the device

Hemolysis & Thrombosis

• Need for a long-term implant 

– Mechanical design life of 10+ years

– Negligible effect on blood



• Hemolysis
– Red Blood cell membrane is torn, 

releasing cell contents

– Caused by shear stress

Blood Damage

• Thrombosis
– Chemical and physical clotting cascade 

creates thrombus (clot)

– Thrombus may detach and clog arteries 

– Encouraged  by (among other things) 
turbulence, recirculation, stagnation



Evaluation and Prediction 

of Blood Damage 

• Turbulent flow, shear, and stagnation are unavoidable

• Theory, empiricism, and Computational Fluid Dynamics 
(CFD) all have limitations in this miniature pump

Quantitative modeling and measurement 
of flow are required



History - “1st generation” LVADs

HeartMate™ LVAS - Thoratec



History - “2nd generation” LVADs

Rotary Pumps

Medtronic Biomedicus pump



Characteristics

• Fewer parts, no flexible materials, 

no moving contacting surfaces

• No valves, unobstructed pathway, 
and large clearances 

Requirements

• Long design life

• Negligible blood damage

Magnetically Suspended Rotary Blood Pumps 

CF4 – implanted in 5+ humans

Licensed to MedQuest Products, Inc.

Currently WorldHeart Levacor VAD

LEV-VAD1

Initial design under this BRP



Centrifugal Flow Pumps



• Eliminates:

Centrifugal

Axial



Axial Flow Pumps

Jarvik

Thoratec

Micromed/DeBakey

Berlin Heart



• Eliminates:

Centrifugal

Axial



LEV-VAD2
Current design



Sub-Systems

Fluid System

Pumping Performance, 

Blood damage

Magnetic System

Bearing, Motor, Sensing

Peripheral systems

Physiological Control,

Cannula, Patient interface,

Power, Monitoring

LEV-VAD2
Current design
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Hemolysis Thresholds

damage

Giersiepen (1990)

Threshold Stress for Damage (Pa)
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Hemolysis Thresholds



Thrombosis

1. High Shear � platelet activation

2. Recirculation � amplification

3. Stagnation � adhesion

• Chemical and physical cascade creates thrombus (blood clot)

• activation

• amplification

• adhesion

• Encouraged  by fluid dynamics (among other factors)



Fluid Mechanics Contribute to 

Blood Damage

Inlet

Blade Passage

Tip Clearance

Exit Volute

Cut-Water

• Regions of turbulent flow, shear, and stagnation are unavoidable 

• Must be designed to minimize blood damage

Avoid stagnation while maintaining acceptable stress levels

• Design requires reliable techniques to predict and measure the flow



Computational Fluid Dynamics - CFD

• Commercial fluid solvers used for full 3-
d Reynolds averaged Navier-Stokes 
equations.

– Steady flow simulations using the 
frozen-rotor assumption and k-e or k-w 
turbulence model.

• Outflow pressure vs. flow curves 
determined over a range of rotational 
speeds.

• Used extensively in the design of blood 
pumps

• Limited accuracy:

– Turbulence modeling

– Rotating frames of reference

– Limited grid resolution – 3D

• Results must be verified with 
experiments

forces

stress cell trajectories



Comparison of Experiment to CFD 

with k-ε and frozen rotor

•Accurate near design point

•Under-prediction at high flow
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Oil streaking 

for wall shear stress

ball bearings

Housing, 

impeller within

pressure taps

translation stage

load 

cell

s

motor

linear bearings

micrometer

Forces and torques 

on impeller

Pressure Flow visualization 

and Velocimetry (PIV)

Experimental
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PIV Measurements within the Blood Pump



PIV Measurements 

within the Blood Pump



Transient Flow During Heartbeat
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Magnetic Finite Element Analysis

• Determine magnetic fields 

and resulting magnetic forces 

• Used for individual 
components and interactions 

of neighboring magnets forces



Magnetic Suspension 

Benchtop Testing
• All magnetic components can be 

located and held independently

• Useful for characterizing combined 
effect of individual magnets

• Development and testing of control 
laws

forces
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� Paper design
� Computational modeling of subsystems
� Demonstration of manufacturability
� Bench-top validation of fluidic and 

magnetic subsystems
� Optimization of subsystems
� Prototype of complete pump
� Blood Testing
� Animal Testing

Progress and Plans



Current & Future Work 

Investigation of Underlying Physics & Methodological

• Applying linked CFD & thrombosis models to pumps

• Effects of turbulence on red cells lysis and platelet activation

• Individual cell tracking

• Continued validation and refinement of computational methods

• Methods for measuring shear stress in pump

Design

• Design revision and optimization of current axial flow pump.

• Simplified designs that are smaller, cheaper, more efficient, 

manufacturable, etc.

• Other blood handling devices: catheters, stents, lungs, kidneys, etc.
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Questions?



-20

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2

P
re

s
s
u

re
 (

m
m

H
g

)

Ventricle Pressure

Aortic Pressure

Time (seconds)

-4

-2

0

2

4

6

8

10

12

0 0.5 1 1.5 2

Time (seconds)

F
lo

w
 (

l/
m

in
)

Ventricle Flow
LVAD Pump Flow

Measured Physiological Flow Conditions

• Continuous pump speed 

≠≠≠≠ constant flow
• Need for measurements

at:

•‘design’
•off-design

•pulsatile flow rates


